Цена доставки диссертации от 500 рублей 

Поиск:

Каталог / ТЕХНИЧЕСКИЕ НАУКИ

Система трехмерного обратного проецирования на основе программируемой матричной логики

Диссертация

Автор: Сорокин, Николай

Заглавие: Система трехмерного обратного проецирования на основе программируемой матричной логики

Справка об оригинале: Сорокин, Николай. Система трехмерного обратного проецирования на основе программируемой матричной логики : диссертация ... кандидата технических наук : 05.00.00 / Сорокин Николай; [Место защиты: Ун-т Саарланда] - Саарбрюккен, 2003 - Количество страниц: 228 с. ил. Саарбрюккен, 2003 228 c. :

Физическое описание: 228 стр.

Выходные данные: Саарбрюккен, 2003






Содержание:

11 Рентгеновская компьютерная томография
12 Исследования в области быстрых вычислений для КТ
13 Научная новизна
14 Структура диссертации
2 Компьютерная томография
22 Преобразование Радона
23 Центральная проекционная теорема
24 Обратное преобразование Радона
25 Аналитические методы реконструкции
251 Методы реконструкции на базе преобразования Фурье
252 Метод обратного проецирования с фильтрацией
26 Итерационные методы реконструкции
27 Сравнение различных методов
28 Детальное описание метода обратного проецирования с фильтрацией
281 Дискретные переменные и функции
282 Фильтрация
283 Алгоритм реконструкции Фельдкампа
284 Дискретный алгоритм обратного проецирования с фильтрацией
29 Выводы
3 Быстрая реконструкция на практике
31 Цилиндрический алгоритм
311 Система координат реконструкции
312 Распределение вокселей
313 Вращение цилиндрической сетки
314 Важные параметры эксперимента
315 Таблица объема
316 Таблица отфильтрованных проекций
317 Таблица геометрии
318 Таблица весовых коэффициентов
319 Модифицированный алгоритм
3110 Анализ цилиндрического алгоритма
32 Реконструкция с применением параллельных вычислений
321 Обзор исследований
322 Требования к проектированию системы
323 Аппаратная архитектура
33 Выводы
4 Формальное описание реконструкции
41 Последовательное обратное проецирование
411 Модули памяти последовательного обратного проецирования
412 Процесс последовательного обратного проецирования
42 Параллельное обратное проецирование
421 Выбор метода параллельной обработки
422 Модули памяти параллельного обратного проецирования
423 Процесс параллельного обратного проецирования
424 Корректность схемы параллельного обратного проецирования
43 Конвейеризированное параллельное обратное проецирование
431 Модули памяти конвейеризированного параллельного обратного проецирования
432 Процесс конвейеризированного параллельного обратного проецирования
433 Корректность схемы конвейеризированного параллельного обратного проецирования
44 Конвейеризированная реконструкция плоскости
441 Вычисления геометрии
442 Планирование процесса реконструкции
45 Реконструкция объема
451 Проекция одной плоскости
452 Модуль памяти отфильтрованных проекций
453 Фильтрация проекционных данных
454 Процесс конвейеризированной реконструкции
455 Анализ производительности
46 Выводы
5 Аппаратная архитектура
51 Основные обозначения
52 Обзор аппаратной архитектуры
521 Структура
522 Требования архитектуры
523 Процесс реконструкции
53 Устройство управления
531 Окружение CCenv
532 Окружение FCCenv
533 Окружение PECenv
54 Подсистема памяти
541 Выбор типа памяти
542 Структура внешней памяти
55 Устройство фильтрации проекций
551 Окружение FDenv
552 Окружение FLTenv
56 Устройство вычисления геометрии
561 Вычисления геометрии
562 Переменные и константы
563 Обзор архитектуры
564 Окружение управления INSCenv
565 Окружение TSCenv
566 Вычисление «Общего элемента»
567 Окружение WCOEenv
568 Окружение ZCenv
569 Вычисление адресов пересечений
57 Устройство управления данными
571 Окружение DFCenv
572 Окружение GMenv
573 Двойная структура памяти
574 Окружение Alenv
575 Окружение DSenv
576 Интерфейс SDRAM
577 Окружение IFCont
578 Окружение RFRenv
579 Доступ к памяти
58 Устройство параллельного обратного проецирования
581 Процессорные элементы
582 Окружение ADDenv
583 Окружение RAenv
584 Окружение AVMenv
59 Выводы
6 Оценка аппаратной архитектуры
61 Параметры системы
Глава 1

Введение:
1.1. Рентгеновская компьютерная томография
Проблема исследования внутренней структуры объектов была всегда важна во многих областях науки и техники, в особенности в медицине и неразрушающем контроле (НРК). Среди различных методов, используемых, для таких исследований рентгеновская компьютерная томография (КТ) является одной из самых лучших, ввиду возможности исследования всех типов материалов.
Рентгеновская КТ основана на измерении ослабления рентгеновского излучения, проходящего сквозь объект исследования. Используя данные измерения, называемые проекциями, которые собраны с разных сторон объекта, возможно вычисление (реконструкция) распределения плотности в исходном объекте. Математически, исходная проекция это прямое преобразование Радона, а реконструкция — обратное преобразование [1, 2, 3, 4, 5]. В зависимости от измерений реконструкция может быть двух- или трехмерной, и реализуется в виде специального алгоритма с большим количеством вычислений — 0(N4), где N — число элементов в одной строке детектора. Большое количество данных и вычислительная сложность алгоритмов реконструкции являются причиной значительного времени реконструкции. Например, объем, состоящий из 5123 векселей, может быть реконструирован примерно за пять минут1, используя современный компьютер [6, 7]. Для приложений критичных ко времени реконструкции задача восстановления объема может быть ускорена за счет применения па1 осень 2003 г.раллельных вычислений, например, распределения реконструкции по вычислительным узлам сети. Однако, такое решение не может быть использовано при условии, что размер системы ограничен, например, в системах промышленного контроля и мобильных системах контроля. Появление новых детекторов высокого разрешения также усложняют задачу реконструкции ввиду значительного увеличения объема обрабатываемых данных. Например, в работе [6] показано, что используя детектор с 10242 пикселями получаются проекции общим объемом приблизительно 1.6 Гб и время реконструкции объема на одном ПК занимает около 90 минут.
Поиск альтернативных вычислительных структур, которые могут заменить мультикомпьютерные системы в специальных задачах, является актуальной задачей исследования. Такие структуры обычно создаются на базе процессоров цифровой обработки сигналов (ЦОС), программируемых логических интегральных схем (ПЛИС) либо заказных интегральных схем (ИС). Специализированные вычислительные структуры имеют широкие возможности для реализации сложных алгоритмов и структур данных, а также позволяют сфокусироваться на оптимизации критических для производительности параметров. Такие преимущества специализированного аппаратного обеспечения, как распараллеливание и конвейеризация операций, могут легко быть реализованы на базе программируемой логики.
1.2. Исследования в области быстрых вычислений для КТИсследования и результаты в области быстрой реконструкции в КТ известны давно и обычно выделяются два основных направления: программная и аппаратная реконструкция. Под термином программная реконструкция будем подразумевать реализацию алгоритмов реконструкции на базе ПК, при этом вычисления производятся одним или несколькими ПК, соединенными в локальную вычислительную сеть. Ускорение реконструкции достигается путем наращивания количества ПК и использования оптимальных схем параллельных вычислений. Некоторые примеры таких высокопроизводительных систем описаны висточниках [6, 7, 8, 9, 10].
Аппаратные реализации, предложенные и описанные в литературе, изготовлены в виде специализированных плат для использования в составе ПК. Эти системы построены на базе различных технологий, таких, как специализированные процессоры, программируемая логика и заказные ИС.
Первые аппаратные реализации с использованием сверх больших интегральных схем (СБИС) содержали в себе достаточно простые вычислительные структуры, которые предназначались только для произведения основного шага реконструкции — обратного проецирования (сложения) [11, 12, 13]. Это были заказные разработки для двухмерной КТ с параллельным пучком лучей. Последующие исследования были сделаны группой под руководством Agi [14, 15, 16]: заказные ИС комбинировались с процессорами ЦОС для вычисления реконструкции. Такая архитектура состояла из матрицы элементов, на базе которой были реализованы прямое и обратное преобразование Радона с использованием конвейеризации операций. Эта разработка использовалась для двухмерной КТ с параллельным и веерным пучками. Аналогичное исследование, однако специализированное для двухмерной реконструкции с параллельных проекций, было описано в работе [17]. При этом, в качестве основного вычислительного элемента для реализации процесса обратного проецирования была использована ПЛИС.
В настоящее время, наиболее значима в практике так называемая конусная томография (схема сканирования с расходящимся пучком), которая имеет значительное преимущество перед схемой сканирования с параллельным пучком — время измерения проекций значительно ниже. Однако, процесс реконструкции объекта по конусным проекциям более сложен, чем по параллельным проекциям. Известны две работы (осень 2003 года) в области аппаратной реконструкции трехмерных объектов по конусным проекциям. Оба исследования используют алгоритм реконструкции Фельдкампа [18]. Первая система CBR-2000 на базе процессоров XTrillion (заказные ИС) производится фирмой Terarecon [19] и позволяет производить реконструкцию объема из 5123 вокселей приблизительно за 128 секунд, используя арифметику с фиксированной точкой. Вторая система [20, 21], разработанная фирмой Mercury Computer Systems на базе ПЛИС, реконструирует объем из 5123 вокселей приблизительно за 39 секунд. При этом, в открытой печати не представлены сведения о точности реконструкции и о масштабировании этих двух систем для реконструкции объемов с большим количеством вокселей, например, 10243. Эти сведения очень важны для использования такого рода систем в области промышленного НРК. Также, отсутствует описание возможностей данных систем работать с новыми детекторами, имеющими высокое разрешение.
1.3. Научная новизнаТема исследования данной работы — практическая реализация системы трехмерной рентгеновской КТ. Описана разработка высокоскоростной аппаратной архитектуры реконструкции объекта по конусным проекциям. Алгоритм реконструкции трехмерных объектов, использованный в данной работе, является самым современным прикладным алгоритмом в НРК. В отличие от других работ в области аппаратной реализации алгоритмов реконструкции, данная работа представляет аппаратную реализацию с полным формальным описанием и спецификацией аппаратной архитектуры.
Для реализации в системе была использована модификация алгоритма реконструкции Фельдкампа по коническим проекциям. В работе формализованы все модификации данного алгоритма, такие как распараллеливание и конвейеризация вычислений. Эти модификации позволили значительно ускорить процесс реконструкции. Дополнительное внимание было уделено архитектуре подсистемы памяти и организации доступа к ячейкам памяти, выполняемых в процессе обратного проецирования. Все вычисления производятся с использованием арифметики с фиксированной точкой.
После анализа алгоритма и полной спецификации параметризированной вычислительной архитектуры была произведена реализация этой архитектуры на базе ПЛИС фирмы Xilinx. Были исследованы воздействия различных параметров на производительность и точность реконструкции. Моделирования показали, что аппаратная система, содержащая в себе одну микросхему ПЛИС и внешнюю динамическую память приблизительно на порядок быстрее, чем система программной реконструкции на базе процессора Intel Pentium 4 2GHz [6, 7]. Было показано, что разработанная архитектура является масштабируемой для реконструкции объемов разного размера. Разработанная архитектура была оценена для различного числа процессорных элементов, используя теоретические и практические (основанные на моделировании) расчеты. В результате было проанализировано влияние параметров дизайна системы на ускорение вычислений и масштабирование архитектуры.
1.4. Структура диссертацииДиссертация разделена на следующие главы.
Глава 2 описывает введение в область КТ, где представлены базовые сведения о преобразовании Радона и постановки обратной задачи, а также описаны методы решения обратной задачи. Особое внимание уделено описанию алгоритма обратного проецирования с фильтрацией, в частности алгоритм реконструкции Фельдкампа по коническим проекциям.
Глава 3 посвящена разработке практического алгоритма реконструкции. В ней представлено детальное описание реконструкционного алгоритма и процесса вычислений, а также произведен обзор исследований в данной области.
В Главе 4 представлено детальное формальное описание всех модификаций алгоритма реконструкции. Процесс реконструкции описан, используя аппаратный подход, т.е. определение потоков данных между различными модулями памяти и арифметическими устройствами. Произведено распараллеливание и планирование вычислений в ходе реконструкции. В итоге, алгоритм реконструкции сформулирован в терминах аппаратных модулей.
Глава 5 содержит детальную спецификацию параметризированной аппаратной архитектуры, основанную на формальном описании алгоритма реконструкции. Представлена реализация всех этапов реконструкции объекта с конических проекций: фильтрация входных данных с детектора, взвешенное обратное